
I 

NATIONAL 
ESOURCE 

FOR COMPUTATION 
INCHE ISTRV 

To be published as a chapter in 11 Potential Energy Surfaces and 
Dynamics Calculations 11

, D.G. Truh1ar, ed., Plenum Press, 
New York, 1981 

RAINBOW SCATTERING IN INELASTIC MOLECULAR COLLISIONS 

Lowell D. Thomas 

August 1980 

TWO-WEEK AN COPY 

This is a library irculating opy 
which may be borrowed for two weeks. 
F a personal retention copy, call 

Tech. Info. Diu ion, Ext. 6782 

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48 and for the National 
Science Foundation under Interagency Agreement CHE-7721305 

LBL-11 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain cmTect information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any wananty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
Califomia. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Govemment or any agency thereof or the Regents of the 
University of Califomia. 



-1-

RAINBOW SCATTERING IN INELASTIC MOLECULAR COLLISIONS 

Lowell D. Thomas 

National Resource for Computation in Chemistry, 
Lawrence Berkeley Laboratory, 

University of California 
Berkeley, CA 94720 

This manuscript was printed from originals 
provided by the author 



-2-

I. INTRODUCTION 

The role of rainbow scattering in elastic collisions of atoms and 

atomic ions is well known[l,2] and provides an important link between 

experimental observation and the theoretical potential energy curve which 

governs the dynamics of the colliding atoms. Only recently, however, has 

analogous phenomenon in the case of non-spherical potentials and 

inelastic collisions been investigated. Based on a comparison between a 

lassical trajectory calculation and experiment it was suggested[3] that 

rainbow-like structures might be observable in the distribution of 

differential cross sections vs. the (quantized) rotational angular 

momentum of a diatomic molecule after collision with an atom or atomic 

ion. Several experiments have subsequently revealed such 

structure[4-10]. In the past two years numerous papers, experimental and 

theoretical, have appeared which discuss the subject[4-23]. Different 

researchers have, however, arrived at different and sometimes conflicting 

terminologies and interpretations of the theoretical analysis. Indeed, 

it has even been questioned whether the rainbow analogy is proper in this 

case. It is therefore appropriate to begin with a brief history of the 

main physical and mathematical concepts in rainbow scattering. This will 

be followed by a classical analysis of coplanar scattering of Li~from 
CO, Finally, a brief review of the experimental and theoretical 

literature is given. 

II. HISTORY 
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The rainbow is one of nature's most spectacular events, and it is 

therefore not too surprising that is has a long history of physical 

explanations. Aristotle(384-322 B.C.) apparently made the first recorded 

attempt[24] (ref. 24 is an exhaustive history of man's recorded thoughts 

on the rainbow.) Although in the intervening centuries there were several 

who correctly ascribed it to one reflection and two refractions of 

sunlight in the individual raindrops[24,25], it was Descartes in 1637[26] 

who gave the first quantative theoretical treatment. Using Snell's law 

for the index of refraction, which he may or may not have learned from 

Snell's work[27], he was able, by computing many light trajectories 

through a single water drop, to show that there was a minimum in the 

deflection angle and that at this angle the intensity of scattered light 

has its maximum. 

Fig. l(a) illustrates the scattering of light in a plane, through a 

spherical water drop of unit radius. A ray of light enters the drop from 

the right at ~with an angle of incidence, o\ , or impact parameter, b 

= sin It is refracted once, with refraction angle, r then 

reflected at ~' and then refracted once again at ~ The ray is 

deflected by an angle ( o( - f1 ) at rfJ\ ( ~ - z; at ~ and 

o( - f ) again at iJ3\ Therefore the total deflection angle is 

Using Snell's law 
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and a mean value of =1.333 for the index of refraction of water in 

air, one can easily calculate the deflection angle for any impact 

It can be seen in fig. l(b) that has a minumum value 

of ~ ~ 13 7 , 9d F urtherrnore, if one were to compute 

the trajectories for many such rays, evenly distributed over the impact 

parameter, b. 

in the vicinity 

parameter, one would find the distribution of deflected rays to be most 

concentrated around the minimum angle. In this way Descartes deduced 

hat the rainbow should appear at the minimum angle. Using slightly more 

modern methods of analysis, one finds that for light scattered into a 

thin annular solid angle of 2 sin d the relative intensity,Ic~). 

is given by, 

where ~ and t/2\ are the two single-valued branches of the function 

b ( ) . At ~these 

showing that the 

two branches coalesce and the derivatives 

diverge, intensity of scattered light is a maximum. 

This is illustrated in fig. l(c). 

Furthermore, if one repeats this analysis for light rays which enter 

the lower half of the sphere and are reflected not once, but twice before 

emerging, one finds a maximum def"lection angle o~ 129.osY These angles 

are in excellent agreement with the angles at which the primary and 

secondary rainbows are observed. 

Descartes' analysis was a remarkable feat, but was deficient in two 

main respects. It said nothing about the colors of the rainbow nor about 



I . 

·1 

-5-

the supernumerary rainbows which sometimes appear faintly in the interior 

of the primary bow and on the exterior of the secondary bow. Newton 

resolved the problem of the colors[28], but the supernumerary rainbows 

are a wave interference effect and their explanation came more than 100 

years later. 

The complete problem of the scattering of light waves from water 

drops is quite complicated. However, in a famous work, the British 

astronomer Airy[29] gave an approximate solution to the problem which 

succeeded in resolving most of the remaining mysteries of the rainbow. 

Airy derived the expression for the intensity of scattered light, 

(&-) -

where m is proportional to ~- &- , the deviation from the rainbow 

angle, and depends on the drop•s radius and the wavelength of the light. 

The integral in this expression is now commonly referred to as an Airy 

function. In some optics textbooks, however, one sees it referred to as 

the Airy rainbow integral[30,31]. 

Airy 1
S equation gives an intensity which oscillates about the 

geometrical result, having its strongest peak just before the rainbow 

angle and decaying exponentially beyond it. This is illustrated in fig. 

2. The weaker peaks describe quite accurately the positions and 

intensities of the supernumerary rainbows and the dependence of the 

intensity on the radius and wavelength resolves several other problems 

associated with the description of the rainbow[31]. 
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Let us now turn to the problem of elastic scattering of atoms. The 

classical and semiclassical treatments of this problem have been amply 

reviewed[!] and only selected aspects of them will be mentioned here. 

Fig. 3(a) shows the trajectories of two colliding atoms in the 

center -mass frame of reference. The deflection angle is a function of 

the impact parameter, and if the potential energy function has an 

attractive well, the function will look qualitatively like that in fig. 

3 (b) . In fig. 3, is the observation angle, which is the absolute 

value of the classical deflection function. The relative scattering 

intensity or differential cross section, is given by[32], 

the sum being over the three single-valued branches of b( ~ ). This is 

illustrated by the solid curve in fig. 3(c). The presence of an 

attractive well in the potential causes a maximum in 0-vs. b, and a 

singularity in the differential cross section. This is entirely 

analogous to the scattering light from water drops, and hence has been 

called rainbow scattering[33]. The results of an early crossed atomic 

am expriment[34] with K and Hg are reproduced in fiq. 4. Allowing for 

the finite resolution of the apparatus, the cross sections in fig. 4 are 

very much what one would expect from classical mechanics. 

Ford and Wheeler[33] in their semiclassical treatment of quantum 

mechanical rainbow scattering remark that the necessary mathematics is 

not essentially different from Airy's treatment of the reflection and 
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refraction of light. Indeed, their semiclassical formula for the cross 

section contains the Airy function or rainbow integral. The 

semiclassical cross section is illustrated schematically in fiq. 3(c). 

The need for such an analyis in atom-atom collisions is shown by the Na 

Hg cross section measurements of Buck and Pauly[35], reproduced here in 

fig. 5. In this experiment the supernumerary rainbows are clearly 

resolved. 

The problem of atoms colliding with molecules is in practice 

considerably more complicated due to the additional degrees of freedom. 

The simplest example is to approximate a diatomic molecule as a rigid 

linear rotor and consider collisions with a spherically symmetric atom (S 

electronic state.) In this case the classical cross section is given by, 

where b is the impact parameter, r is the initial angle of orientation 

of the rotor, j' is the final angular momentum of the rotor, and ~· is 

the scattering angle. (A detailed discussion of this formula and the 

other variables in it is given in the next section.) Instead of a simple 

derivative, as in eq. 5, this expression contains a Jacobian determinant 

of the partial derivatives of the two initial trajectory variables b 

and with respect to the final trajectory variables j' and 

The Jacobian, like the simple derivative in eq. 5, can be and often is 

singular. The analogy of this to rainbow scattering in the simpler 

spherically symmetric case is apparent and was recognized in early 
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semiclassical treatments of this problem[36,37]. In fact, it is the 

singularities of this Jacobian which necessitated the development of the 

"uniform 11 semiclassical theories (for a review and extensive references 

to the semiclassical literature, see ref. 38.) The differential cross 

section in eq. 6 is a function of both j' and Therefore, if the 

Jacobian is singular at a specific point (j~, ~),the rainbow-like 

structure will appear in both the angular distribution, rT'(~)~) 

vs. and the rotat"ional state distribution, -~~vs. j'. 

Although the an ogy to rainbow scattering in this case has been clearly 

understood[36,37] and observed in at least one classical trajectory 

calculation[39], prior to 1977 there was no discussion in the literature 

to suggest that rainbow structures might ally be observable in any 

distribution other than the angular distribution. This is probably due 

to the fact that in a quantum mechanical description, the momentum 

variables are quantized, and in the early quantal studies, primarily 

vibrational excitations and 

considered. The enerqy spacings 

rotational excitations 

between .adjacent quantum 

of ~ were 

numbers are 

fairly large in these cases and no remnant of the classical singularities 

is obvious. However, considering again rotational excitation of a 

rigid-rotor diatomic molecule, one can easily imagine that if the energy 

spacing between the quantum j-states were small compared to the width of 

t classical structure, that it might well be observable. This 

poss ci bi l 'ity was first considered in a compar·i son of classical 

differential cross sections for Li~{ scattering from co and rywith 

ex rimental measurements[3]. In that study a number of rainbow-like 
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structures did appear in the rotational state distribution, and they were 

shown to be due to singularities in the Jacobian of eq" 6" These were 

called "rotational rainbows 11 [3] since the rainbow structure appeared in 

the rotational state distribution" Furthermore, the experimental 

time-of-flight spectra[40] also showed a number of anomalous peaks and 

shoulders which might have been noise but which qualitatively agreed with 

the classical results to a sufficient extent that it was conjectured that 

rotational rainbows were in fact experimentally observable" A number of 

experiments have now clearly demonstrated their existence[4-10]o 

III" CLASSICAL ANALYSIS 

In this section I give an 
I 

extension of the classical analysis of 

U~ scattering from CO begun in ref" Since there has been some 

debate[l4] over the terminology and interpretations different researchers 

in this area have used, I begin with a set of definitions of the various 

terms" 

A rainbow is defined to be those points where the Jacobian in the 

classical cross section is singular" This definition includes the 

familiar rainbows of one-dimensional potential scattering as a special 

case. Following Ford and Wheeler[33], scattering in the neighborhood of 

a singular Jacobian will be referred to as rainbow scattering" When 

these singularities are observed in the rotational state distribution 

they will be called rotational rainbows" When observed in the angular 

distribution, they will be called angular rainbows or just rainbows" 

Arguments can no doubt be put forward in favor of not calling these 
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singularities rainbows at all. However, in the mathematical sense the 

singular Jacobi an is a straightforward generalization of the 

one-dimensional case. Also, in the physical sense, it is shown below 

that when the Jacobian is singular, the scattering angle is alw~ys a 

constrain maximum or minimum. These analogies are, I believe, 

sufficiently strong to retain the rainbow terminology. 

Also, will distinguish between rainbow scattering and quantum 

mechanical interferences. Interferences occur any time there is more 

than one initial condition which leads to the same final state ( ~·ll.· 

the double slit experiment) and have nothing to do with rainbows per ~· 

Adhering to the above definition of rainbow scattering, it is 

characterized by a sharp drop in the scattering intensity at the rainbow 

angle or j-value. This is a feature of both the classical and the 

quantum mechanical descriptions. 

The center-of-mass coordinate system used to describe the scatterinq 

of an atom from a linear rigid rotor i s shown i n f i g . 6 . R, K and l 
are the relative position vector and 1 i near and angular momentum 

~ ..::;;;. -:;:> 
vectors, respectively, of the atom and r, k and j are similarly defined 

for the rigid rotor. For a fixed value of the initial kinetic energy 

(constant K) and of the rotor 1 s rotational energy (constant j), five 

initial values are necessary to uniquely define a trajectory. The 

complete differential cross section is given by[41], 

r;r ('~') 4 J ' ' • "' Z_ _lA ~···It\ J ~ ( ~~ J 1l.v ~J¥\ ~) (f) 
!f J J i N~.,. ... f' si .. 'l>- '& ('19-, ~ J oi ') tJ'I J ') 
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(bft\, ~ ) are the initial plane polar coordinates of the atom in the 

(x,z)-plane, and ( 4' ) are the final spherical polar coordinates 

of the scattered atom. Primes indicate final values. The sum over i is 

over all initial points (b;(\ ~ ~·~ ~) which lead to the same 

final point , tp, tl..:f'·j'). Integrating over all final trajectory 

values except j 1 and leads to the cross section formula, eq. 6. 

In the examples that fo 11 ow, j, it{ and ~ are fixed at zero 

corresponding to coplanar scattering with the rotor initially at rest. 

However, the analysis is valid for any initial j' eX.. and f The 

exact behavior of the rainbows when integrated over all and f 
remains a problem for future research. 

The Jacobi an in eq. 6 is made up of four partial derivatives, 

(r) 

It will be singular if any one of these derivatives is singular and at 

first glance there would appear to be four different types of 

singularities. Rather remarkably, however, all four derivatives are 

always simultaneously infinite. This means that one and only one type of 

rainbow is possible. A geometrical demonstration of this follows. 

The rainbows can be located in the following way. Consider the two 

surfaces j'(b, r and ~ (b, ) . Here and hereafter, j 1 is the 

angular momentum "quantum number" which is related to the classical 

l t .( b angu ar momen um, ~· y, 

(9) 
' 
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All angles are given in degrees and lengths in Bohr radiL j 1 and 

have been computed for Li~-CO for the range 3.6<b<7.0 Bohr and ~ ~ 
<36~ at collision energy 4.28 eV. Stereographic projections of these 

two surfaces are shown in fig. 7. The classical functions j' and 19- can 

have both positive and negative values, but only their magnitudes are 

observable. Therefore, their absolute values have been plotted in fig. 

7, resulting in cusps in both surfaces at j 1 and equal zero. 

Experimental measurements[4] and a 3-dimensional classical trajectory 

have been done at this energy for scattering at ~=loV calculation[13] 

for Li~{-co, so 

fixed scattering 

let us consider the rotational state distribution at a 

angle of 1~ This defines a functional relationship 

between b and ~which is shown by the dashed curve in fig. 8. This is 

a contour of constant q;;- The heavy black line on the j 1 -surface in 

fig. 7 is a trace of this constant- fr contour. The projection of this 

trace on the ( j I 9 r )-plane is the function whose slope gives the 

partial derivative ~~)fY ' Likewise for the projection in the 

(j' ,b)-plane. Therefore, when j 1 reaches a local maximum on the 

constant- contour it must be a local maximum in the projections on 

both the (j', )- and (j 1 ,b)-planes. As a result both of the partial 

derivatives ~f;)f¥and ~)~ are infinite. This is shown in figs. 9(a) 

and 9(b) for the maximum at j 1 =12.17. Therefore, at each local extremum 

(both maxima and minima are possible) of j 1 on the constant-t:Y contour 

a rainbow will occur" Furthermore, this shows that at the rainbow, j 1 is 

a constrained extremum, the constraint being that ~is constant. 

We could now reverse the roles of j 1 and ~in the above paragraph 
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and arrive at another set of rainbow points at which the other two 

partial derivatives were pair-wise singular. At each of these 

points ~ would be a constrained extremum with the constraint that j' 

is constant. In fact, however, the set of rainbow points found in this 

way would be identical to the set found in the above paragraph. That is, 

at each rainbow point ( ~ ·~\ ), all four of the partial derivatives 

are singular. (This was first pointed out to me in discussions with J.L. 

Kinsey. Oversight of this led to an incorrect classification of rainbow 

types in ref. 3.) This can be demonstrated as follows. 

We have already seen that at the rainbow point ( = 1~' = 12 . 17 ) ' 

two of the partial derivatives are singular. Let us now evaluate the 

other two. Fixing j'=l2.17 defines a constant-j' contour in the ( b' 

}()-plane. This is shown in fi9. 8. The heavy black line on the 

-surface in fig. 7 is a trace of this contour. Again, the partial 

derivatives can be evaluated from the projections of this trace on the 

( @-,b)- and , (r' )-planes. These projections are shown in figs. 

9(c) and 9(d). It can be seen that on the constant-j' contour t:Y is 

also a 

derivatives 

at the rainbow point 

~)j1are singular. That this is 

can be deduced from the fact that the constant-

and hence the 

generally true 

and constant-j' 

contours are always tangent to one another at the rainbow points. 

To reiterate, what has been shown is that there is one and only one 

type of rainbow and that it occurs at points where and j' are 

simultaneously extrema, each subject to the constraint that the other is 
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held constant. 

In the example given above, the scattering angle 

scattering at this and· larger angles comes from trajectories of low 

impact parameter which hit the hard repulsive core of the CO molecule. 

Therefore, the ocurrence of this rainbow in no way depends on the 

existence of an attractive well in the potential. This is in contrast to 

the one-di mens i ona·l case of simple potential scattering where there must 

be an attractive well to have a rainbow. Since the Li~~co potential 

energy surface[42] does have a rather deep attractive well , the 

-surface in fig. 7 does show at least two local unconstrained maxima to 

the left of the cusp. Intuitively, one feels that there must be some 

sort of different rainbow associated with those maxima. Indeed, 

something interesting does occur at those points. 

contour of the vicinity of b=6.0 and Consider the 

k'=BciJ!in fig. 10. 

the constant-

There are two values of j' whose contours are tangent to 

contour, meaning that there are two rainbows of the 

type discussed above. These are at the points (~.j') = (7.3,8.4) and 

(7.3,25.97). Now let us slowly raise the value of the «tr-contour and 

at each value find the two rainbow values of j'. This process will trace 

a "rainbow contour" in the 

7. 7¥. where ~ is an 

,j')-plane, illustrated in fig. 11. At 

unconstrained maximum, the two rainbow points 

coalesce. Similar arguments will show that the same thing happens in the 

vicinity of a local unconstrained maximum in the j 1 -surface as well. As 

stated above, there is only one type of rainbow, but in the presence of 
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an attractive well, it is possible for two rainbows to coalesce. Other 

points of coalescence are also shown in fig. 11. Note that it is 

possible to distinguish between a confluence of rainbows at a maximum on 

the ~-surface from one due to a confluence of rainbows at a maximum on 

the j'-surface. At a -maximum the tangent of the rainbow contour is 

parallel to the j'-axis and at a j'-maximum the tangent is parallel to 

the -axis. Only a section of the rainbow contour is shown in fig. 

11. The complete rainbow contour would continuously connect all points 

of confluence, not all of which are necessarily shown in fig. 11. 

An interesting research problem would be to relate the unconstrained 

maxima of the t}- and j'-surfaces (at all orientations o(andf to a 

set of anisotropic parameters in the potential energy surface. Then, if 

experimental resolution were sufficient to locate the rainbow contours in 

the j')-plane, these anisotropic parameters could be experimentally 

measured. 

Double rainbows in the total differential cross sections have been 

observed in a number of calculations[43-46] and at least one 

experiment[47]. It can be seen in fig. 11 that if the differential cross 

sections were summed over all j'. the largest intensity would be at the 

two "coalescent" rainbow angles, & =7.3?\land 7.7w. These are too 

close to be resolved in the experiment, but agree well with the observed 

rainbow angle at about~~]. For a homonuclear diatomic molecule the 

-surface is symmetric about 18~nd only one "coalescent" rainbow 

angle would be observed. Since CO varys only slightly from homonuclear 
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symmetry, the two angles are not widely separated. For highly 

unsymmetric heteronuclear diatomics, one could expect to observe a double 

rainbow in the total differential cross section. A similar argument is 

probably the correct explanation for why double rainbows appear in the 

scattering of Na from (CHf\X where X=Br, Cl and I, but only single 

rainbows are observed for ( CH f4'\:, csrA and ccf\ [2,47]. The present 
\ 

an a 1 ys is indicates that it is the asymmetry of the anisotropy and not 

just the anisotropy alone which produces multiple rainbows in the total 

differential cross sections. This was inferred by Buck, et. ~· [47] 

from their measurements. In the case of heteronuclear diatomics another 

interesting research problem would be to try and relate the two 

"coalescent 11 rainbow angles to the two different collinear well depths. 

An analogous effect occurs in the integral cross sections, 

integrated over all scattering angles. Fig. 11 predicts peaks in the 

rotational state distribution at the "coalescent" j-values of about j'=7, 

13, 18 and 31. 

IV. REVIEW 

A. Theory 

In addition to refo 3, three other studies of Li~CO have been 

done[11,13,42]. In ref. 11 classical partial cross sections (fixed 

impact parameter) were compared with the coupled states 

approximation[48,49]. More recently, classical calculations were 

done[13] for scattering angle 1~nd collision energy, E=4.28 eV. to 
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compare with time-of-flight (TOF) measurements[4] which clearly show 

structure in the rotational state distribution. This comparison is 

noteworthy in the following respect. Using Gaussian line widths which 

account for the finite resolution of the experimental apparatus, the TOF 

spectrum was calculated from the classical cross sections. The two 

calculated classical rotational rainbows were effectively washed out by 

the line broadening of the apparatus. In contrast the experiment showed 

four distinct, well resolved peaks. Barring an unforeseen drastic change 

in the classical results due to improvements in the potential energy 

surface, it would appear that quantum mechanical interferences are 

necessary to explain the observed structure. If true, this is in 

remarkable contrast to the commonly held belief that when the collision 

energy is large compared to the quantum state energy spacings, most 

interference effects are quenched and a classical description is valid. 

A semiclassical analogue of the treatment in the previous section is in 

progress[50] which may shed further light on this. 

Schepper et. al. [5,15] have modeled hiqh angle scattering of K 

from CO and 

dimensional 

~ with collisions 

classical analysis of 

from a hard ellipsoid. The full, 

this model problem can be carried out 

exactly and they find good agreement with their measurements. They have 

called the structure "bulge singularities" or the "bulge effect" alluding 

to the topology of the ellipsoid. 

Another approximation which can be used to study rotational rainbows 

is the quantum mechanical lOS approximation. (For a review and extensive 
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references to the original IOS literature see ref. 51.) In this 

approximation explicit averaging over the ~ and orientation angles 

is eliminated so that only the impact parameter (or equivalently the 

orbital angular momentum) and the initial molecular orientation angle 

remain. A correct semiclassical analysis of this approximation results 

in a cross section formula which contains a Jacobian, equivalent to that 

in eq. 6 [20,23]. Although the IOS approximation is no doubt more 

accurate than the coplanar approximation in most cases, the location and 

interpretation of the rainbow structures in this formalism do not differ 

in any significant respect from that in the coplanar classical 

description. 

approximation 

collisions. 

Schinke and various co-workers have 

to study Li~i-1)~[16], K-N~ K-CO[l8] 

used the IOS 

and He-N~17,22J 
\ 

Bowman[23] and Schinke[l6], however, have both made an approximation 

beyond the IOS and semiclassical approximations, arriving at cross 

section formulas which contain a simple product of two partial 

derivatives rather than a 2x2 Jacobian. Instead of locatinq the 

singularities of the Jacobian, eq. (8), one can equivalently locate the 

(I o) 

In general, when this Jacobian is zero, none of its four partial 

derivatives is zero. Therefore, the physical interpretation of the 

rainbow, that is the extremal nature of j' and is somewhat 
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obscured. At large scattering angles for some systems (see, for example, 

ref. 20, fig. 4) the constant contours in the (b, ~)-plane are 

nearly parallel to the ~-axis. It follows in this case that, 

and 

Bowman acknowledges that a complete, 2-dimensional, stationary phase 

approximation to the IOS formula contains a 2x2 Jacobian similar to eq. 

(10). He used the simpler formula, eq. (12), in his analysis[23], 

however, since for the system he was studying this was a good 

approximation. In Schinke's stationary phase analysis of the IOS 

approximation[16], he independently derived a formula similar to 

Bowman's. In his derivation the approximation, eq. (12), is implicit and 

unstated. Much of Schinke's later analysis[17,18,21] also depends on 

this approximation. 

While the approximation, eq. (12), is in some cases valid one should 

exercise caution in basing physical interpretat·ions on it. For example, 

eq. (12) has been interpreted[10,17,18,23J to mean that there are two 

types of rainbows - a normal or "impact parameter" type due to the zeros 

Of ~\,. of and an "orientation anglet' type due to the zeros j:__. --
~~ 

Based on this interpretation, Serri et. al. [10] have proposed the term 

"halo" - an appropriate analogy only if eq. (12) were exact rather than 
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approximate. Schinke has interpreted eq. ( 11) to mean that interfering 

trajectories near a rainbow differ only in their initial orientation 

angle, and has used the term "orientation-interference 

oscillations"[l6]. In general, however, the interfering trajectories 

have different impact parameters as well. This is easily seen in the 

constant contours in fig. 8 of the previous section, fig. 9 of ref. 3 

and fig. 4 of ref. 20. 

With the exception of one partial cross section calculation for 

He-CO collisions[12], no discussion of rotational rainbows has been given 

in the context of exact quantum mechanical calculations. It is entirely 

possible that rainbow structures may be present in some previous close 

coupling calculations and have simply gone unnoticed. However, the 

conditions for most clearly observing them high energy and larqe 

rotational transitions result in too many open channels for converged 

close coupling calculations. With new improvements to close coupling 

methods [12,52], there is hope tha~ some such studies can be undertaken 

in the near future. 

B. Ex riment 

The experimental study of rainbows in inelastic collisions is also 

recieving an increasing amount of attention. Eastes et. al. [4] have 

measured TOF spectra for Li)y{-co collisions at scattering angles ~'-1}/ 
and collision energy 4.28 eV. They clearly resolve a number of peaks in 

the rotational state distribution. 
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Beck and co-workers have measured energy loss spectra for K 

scattering from CO and ~5], for scattering angles gr·eater than g'df.( and 

energies 0.34-1.24 eV. and have also observed an isotope effect in the 

observed structure[6]. They have successfully modeled their results with 

classical scattering from a hard ellipsoid[5,15]. 

Bergmann and co-workers have done a number of experiments with 

He[7,8] and 

techniques. 

Ne[9] collisions with N~ using spectroscopic observation 

They observe rainbow structure in both the rotational state 

and angular distributions. Serri et. al. [10] have reported structure 

in similar measurements for Ar-N~collisions. 
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Figure captions 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

c· 
I l 9. 

1 (a) Path of light ray throug~ 0~water drop at the rainbow 
deflection angle 9" =137.92\1'. (b) Impact parameter vs. 
deflection angle. (c) Derivative of the lower single-valued 
branch of the impact parameter vs. the deflection angle. 

2 Intensity of light scattered from a water drop as predicted by 
geometrical optics and Airy's formula for wave optics (redrawn 
from ref. 29.) 

3 (a) Trajectories of two colliding atoms in the center-of-mass 
frame. (b) The impact parameter as a function of the deflection 
angle. (c) Schematic of the scattering cross section according 
to classical (solid line) and semiclassical mechanics (dashed 
1 i ne.) 

4 (a) Example of rainbow scattering (observations corrected to the 
c.m. system. K-Hg, v~ =1026m/sec). (b) Alternate representation 
of the same data. {Reprinted with permission from ref. 34., fig. 
1) 

5 Measured differential cross sections for NaHg of five different 
energies in the center of mass system. Supernumerary rainbows 
are well resolved. (Reprinted with permission from ref. 35., 
fig. 7) 

6 Coordinates used to define the initial values of a trajectory. 

7 Stereographic projections of the surfaces j I (b, r) (upper 
figure) and &-( h1 r) (lower figure.) The heavy t{_la;:k 1 ine on the 
upper surface is a trace of the contour 19'=10'1%' Projections 
of this trace are shown in the (j',b)- and (j', f)-planes. The 
heavy black lines on the lower surface are the trace of the 
contour j'=12.17. Projections of this trace are shown in the(~ 
,b)- and ( )-planes. Focusing the right eye on the right 
figure and the eft eye on the left figure will produce a 3-D 
image. Placing a long letter-size envelope on edge between the 
left and right figures is a use~l visual aid. 

8 Contours of constant =1~(dashed) and constant j'=12.17 
(solid) in the (b, )-plane. 

9 ( a) b ( j ' , 1!9-) f.g l_l constant = 1 W. ( b ) Y ( j ' , ) for 
constant &=10/'. (c) b(j', ) for constant j'=12.17. (d) 

r(j'' e-) for constant j'=12.17. 

Fig. 10 Contours of constant (dashed) and constant j' (solid). 

Fig. 11 Points in the (j', ~)-plane where two or more rainbows 
coalesce. Solid circles- points due to local maxima on the 
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surface j'(b, ). Open circles- points due to local maxima on 
the surface (b, G). The solid line is a segment of the 
"rainbow contourll. 
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